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deprotection of 10 affords 2a, carba-D-fructofuranose, in excellent 
yield (Scheme I).10 Phosphorylation of 10 with dibenzyl-
chlorophosphate and complete deprotection provided 2b, carba-
D-fructose 6-phosphate. 

The important result from biological testing of 2b is that these 
carba analogues of fructose are indeed substrates for the relevant 
enzymes of the glycolytic pathway.11 Analogue 2b is an excellent 
substrate for phosphofructokinase and 6-phosphofructo-2-kinase, 
with Km from 5-20 times larger than that of the natural substrate, 
Fru-6-P. The analogue inhibits fructose-2,6-bisphosphatase with 
Ky about 500 times higher than that of Fru-6-P. Finally, pre­
liminary results reveal that the diphosphate generated from 2b 
by the action of 2-kinase is a potent positive effector for phos­
phofructokinase. 

This work demonstrates a practical synthetic approach to im­
portant new analogues of fructofuranoid enzyme regulators. The 
synthesis illustrates an interesting heuristic principle that can be 
used to plan future syntheses: the acyclic, unbranched, chiral, 
and elaborately functionalized carbon chains that are readily 
available from carbohydrates can be neatly converted to poly-
hydroxylated and branched carbocycles by the use of appropriate 
unitive synthons. Further applications of this concept are under 
investigation. 
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Dihydro derivatives of retinal were first used by Nakanishi et 
al.2 in their pioneering development of a point charge model to 
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Table I. Absorption Maxima and Bacterio Opsin Shifts for Retinal 
Analogues 

5,6-dihydro 7,8-dihydro 
chromophore native ref 2 this work ref 2 this work 

aldehyde, nm" i i l 370 36i 338 340 
protonated Schiff 440, 465^ 425 428 395 385 

base, nml 

pigment, nmc 568 476 475 400 445 
opsin shift, cm-' 5100,3900'' 2500 2300 1000 3500 

"Synthesis described in ref 8. 'Chloride salt of the fl-butylamine 
Schiff base in methanol. cThe sample consisted of membrane sheets 
suspended in H2O at 1.5 0C.9 ''These values are for a planar 6-s-trans 
PSB as the reference state for the opsin shift rather than the twisted 
6-s-cis conformer found in solution.10 

Figure 1. Model for the bacterio opsin binding site where the 6-s-trans 
chromophore interacts with a pair of opsin charges near C5-"C7 The 
opsin shift data presented here support the idea that the retinal chro­
mophore is perturbed by a negative charge near C5 and a positive charge 
near C7. However, it is also evident that the tendency for the negative 
charge near C5 to red-shift the absorption is largely canceled out by the 
presence of the positive charge near C7. This shows that much of the 
opsin shift is caused by protein-chromophore interactions near the Schiff 
base. 

explain how bacteriorhodopsin (BR) shifts the absorption max­
imum of its retinal protonated Schiff base (PSB) chromophore 
to the red. They measured the protein-induced shift of the ab­
sorption maximum (the "opsin shift") for selectively saturated 
chromophores. The opsin shift was reported to drop from 4870 
cm"1 in the native chromophore, to 2500 cm"1 in the 5,6-dihydro 
derivative, and to only 1000 cm-1 in the 7,8-dihydro derivative. 
These data indicated that a negative bacterio opsin charge located 
near C 5 =C 6 of the 0-ionone ring is responsible for the opsin shift. 
A variety of BR analogue experiments have been performed 
subsequently to test the point charge model.3 In our own ex­
periments4 it was useful to reexamine the 5,6- and 7,8-dihydro-
retinal data. While our 5,6-dihydro spectra are in agreement with 
the earlier work, our measured opsin shift for the 7,8-dihydroretinal 
derivative (3500 cm"1) is larger than the originally published value. 
A large opsin shift for the 7,8-dihydro derivative would not be 
expected to result from a single negative point charge perturbation 
located near C5=C6 . Thus it is evident that the current picture 
for the mechanism of the opsin shift in BR must be revised. 13C 
NMR experiments5 have supported the initial proposal that there 
is a negative protein charge near C 5 =C 6 and have suggested that 
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there might be a positive opsin charge near C7. The reduction 
of the opsin shift to 2300 cm"1 in 5,6-dihydro BR and its increase 
to 3500 cm-1 in 7,8-dihydro BR provides strong independent 
evidence for the positive charge near C7. More importantly, the 
data presented here show that this positive charge is an important 
spectroscopic determinant and that protein perturbations near the 
Schiff base end of the chromophore play a dominant role in the 
production of the opsin shift. A similar reanalysis of the mech­
anism of the opsin shift has recently been developed independently 
by Nakanishi and co-workers.6,7 

In Table I we present the absorption maxima of the protonated 
Schiff bases and of bacterio opsin regnerated with 5,6- and 7,8-
dihydroretinal. The absorption maxima of native BR and its 
5,6-dihydro derivative are in good agreement with the results of 
ref 2, while the Xmax of the 7,8-dihydro derivative is found to be 
445 nm.6 Thus, the opsin shift for 7,8-dihydro BR (3500 cm"1) 
is much larger than that of the 5,6-dihydro derivative (2300 cm"1). 
To compare these values with the opsin shift of the native chro­
mophore it is necessary to separate electrostatic from ground-state 
conformational effects. 13C NMR experiments5 have shown that 
bacterio opsin preferentially binds the 6-s-trans conformer rather 
than the 30-70° twisted 6-s-cis conformer found in solution." The 
absorption maximum for the s-trans conformer is calculated to 
be red-shifted by 16-32 nm from that of the twisted s-cis con­
former,12 and locked 6-s-trans PSB analogues are red-shifted by 
25 nm.10 By use of the experimental value, the opsin shift for the 
native chromophore can be partitioned into ~ 1200 cm"1 due to 
isomerization to a planar s-trans structure and ~3900 cm"1 due 
to other protein-chromophore interactions. 

Figure 1 presents a model for the location of the protein charges 
which are important for the opsin shift in bacteriorhodopsin. A 
negative protein residue is placed near C5 in agreement with the 
"point charge" model of Nakanishi et al.2 In addition, a positive 
opsin charge is placed near the C7 position of the chromophore. 
To understand how the opsin shift data lead to this model it is 
necessary to realize that in the excited state of the retinal PSB, 
positive charge shifts toward the ionone ring end of the chro­
mophore, while in the ground state the positive charge is relatively 
localized near the Schiff base.12"14 A negative environmental 
charge near the ionone ring would thus stabilize the energy of the 
excited state more than that of the ground state, leading to a red 
shift in the absorption. A positive environmental charge near the 
ionone ring would have the opposite effect." In the 5,6-dihydro 
derivative the interaction of the conjugated chain with the negative 
charge is essentially eliminated and the opsin red shift falls to 2300 
cm"1. However, in this analogue a positive charge near C7 would 
still interact effectively with the conjugated chain and should 
contribute to a reduction of the opsin shift. When the retinal chain 

(6) Okabe et al. (Okabe, M.; Balogh-Nair, V.; Nakanishi, K. Biophys. J, 
1984, 45, 272a) have listed the absorption maximum of the 7,8-dihydro BR 
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is further shortened in the 7,8-dihydro derivative, we see the opsin 
shift increase to 3500 cm"1. This rather dramatic biphasic 
behavior—that is, first a reduction in the opsin shift followed by 
an increase in the opsin shift as the chain is truncated—is a natural 
consequence of the interaction of the retinal chromophore with 
a pair of protein charges of opposite sign (or with a strongly dipolar 
residue) near the ionone ring. These dihydro data thus provide 
strong evidence for a dipolar pair of opsin charges near the ionone 
ring in bacteriorhodopsin. 

In the 7,8-dihydro derivative, a large opsin shift of 3500 cm"1 

remains. When this value is compared to the ~3900-cm"' opsin 
shift for the native chromophore it is clear that much of the 
bacterio opsin induced red shift must be due to the interaction 
of the protein with the Schiff base end of the chromophore}6 The 
red shift in BR is most easily explained by a weak hydrogen bond 
between the Schiff base proton and an electronegative group in 
the protein.17 The chemical shift of 15N-BR,18 the perturbation 
of the 13C15 resonance,5 and recent resonance Raman data19 

strongly support this mechanism. These observations on the 
mechanism of the opsin shift in bacteriorhodopsin suggest that 
conformational distortions and the environment of the protonated 
Schiff base moiety may play a crucial role in Xmax regulation of 
other rhodopsins. 
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The presence of coordination unsaturation in organo-
transition-metal complexes is required in many of the fascinating 
and useful reactions in organometallic chemistry, e.g., homoge­
neous catalysis,1 many ligand substitution reactions,2 CH acti­
vation,3 and various synthetic organic transformations.4 Studies 
of multicoordinatively and -electronically unsaturated (MCMEU) 
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